Derivations

Variable Name

Symbol

Configuration

\(q\)

Configuration displacement

\(\Delta q\)

Integration timestep

\(dt\)

Velocity in tangent space

\(v = \frac{\Delta q}{dt}\)

Configuration limits

\(q_{\text{min}}, q_{\text{max}}\)

Maximum joint velocity magnitude

\(v_{\text{max}}\)

Identity matrix

\(I\)

Limits

Configuration limit

Using a first-order Taylor expansion on the configuration, we can write the limit as:

\[\begin{split}\begin{aligned} q_{\text{min}} &\leq q \oplus v \cdot dt \leq q_{\text{max}} \\ q_{\text{min}} &\leq q \oplus \Delta q \leq q_{\text{max}} \\ q_{\text{min}} &\ominus q \leq \Delta q \leq q_{\text{max}} \ominus q \end{aligned}\end{split}\]

Rewriting as \(G \Delta q \leq h\), we separate the inequalities:

\[\begin{split}\begin{aligned} &+I \cdot \Delta q \leq q_{\text{max}} \ominus q \\ &-I \cdot \Delta q \leq q \ominus q_{\text{min}} \end{aligned}\end{split}\]

Stacking these inequalities, we define:

\[\begin{split}\begin{aligned} G &= \begin{bmatrix} +I \\ -I \end{bmatrix}, \\ h &= \begin{bmatrix} q_{\text{max}} \ominus q \\ q \ominus q_{\text{min}} \end{bmatrix} \end{aligned}\end{split}\]

Velocity limit

Given the maximum joint velocity magnitudes \(v_{\text{max}}\), the joint velocity limits can be expressed as:

\[\begin{split}\begin{aligned} -v_{\text{max}} &\leq v \leq v_{\text{max}} \\ -v_{\text{max}} &\leq \frac{\Delta q}{dt} \leq v_{\text{max}} \\ -v_{\text{max}} \cdot dt &\leq \Delta q \leq v_{\text{max}} \cdot dt \end{aligned}\end{split}\]

Rewriting as \(G \Delta q \leq h\), we separate the inequalities:

\[\begin{split}\begin{aligned} &+I \cdot \Delta q \leq v_{\text{max}} \cdot dt \\ &-I \cdot \Delta q \leq v_{\text{max}} \cdot dt \end{aligned}\end{split}\]

Stacking these inequalities, we define:

\[\begin{split}\begin{aligned} G \Delta q &\leq h \\ \begin{bmatrix} +I \\ -I \end{bmatrix} \Delta q &\leq \begin{bmatrix} v_{\text{max}} \cdot dt \\ v_{\text{max}} \cdot dt \end{bmatrix} \end{aligned}\end{split}\]

Tasks